Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE In Physics (4PH0) Paper 2P

edexcel ${ }^{\text {itizi}}$

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4PHO_2P_1801_MS
All the material in this publication is copyright
(C) Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	one mark for each correct tick;;;	2 marks max. if 4 ticks 1 mark only if 5 ticks 0 marks if 6 ticks	3
	Energy source \quad Tick		
	wind		
	oil		
	coal		
	geothermal		
	bio-gas		
	nuclear		
(b)	advantage: any one from - high energy density / eq; - short start up time / adaptable to demand; - reliable technology; - does not depend on weather conditions; - (relatively) cheap; disadvantage: any one from - produces CO_{2} / greenhouse gases / air pollution / sulphur dioxide / nitrous oxide; - causes global warming; - causes acid rain;	ignore ideas about transportation allow 'produces large amount of energy' allow non-renewable ignore unqualified 'damages environment', 'pollution' etc.	2

Total for question $1=5$ marks

Question number	Answer			Notes	Marks
2 (a) (i) (ii)	power = vo substitutio rearrangem evaluation e.g. $\begin{aligned} & 6.5=230 x \\ & (I=) 6.5 / \\ & (I=) 0.028 \end{aligned}$	urrent;		allow rearrangements and use of standard symbols e.g. $\mathrm{P}=\mathrm{V} \times \mathrm{I}$ do not allow c/C/A for current allow 0.03, 0.0283, 0.02826... (A) do not allow 0.02 (A)	1 3
2 (b)	1 mark for each correct; ; ;				3
	S1	S2	S3	Lamp	
	up	up	up	on	
	down	down	down	off	
	up	up	down	off	
	down	up	up	off	
	up	down	down	on	

Total for question $2=7$ marks

Question number	Answer	Notes	Marks
3 (a)	left diagram: at least 3 correctly curved wavefronts centred on the gap; spacing of wavefronts is consistent with original wavefronts; right diagram: evenly spaced planar wavefronts (curved at the edges);	ignore where wavefront lines start and finish DOP judge spacing by eye reject if any wavefront line is as long as original wavefront lines ignore spacing of wavefronts	3
(b) (i) (ii)	```(wave) speed = frequency }\times\mathrm{ wavelength; substitution / rearrangement; evaluation of frequency; evaluation of wavelength to at least 2 significant figures; e.g. 6.0 = f x 4.0 f=1.5(Hz) (\lambda2 =) 2.7 (cm)```	allow rearrangements and use of standard symbols e.g. $v=f \times \lambda$ condone s for speed allow alternative methods e.g. $6 / 4=4 / \lambda$ gains both method marks allow 2.67, 2.6 recurring condone 2.6, 2.66 etc. do not allow 3.0	1 3

Question number	Answer	Notes	Marks
4 (a)	(total) momentum before (a collision) = (total) momentum after (a collision);	ignore unqualified 'momentum is conserved'	1
(b)	```correct value of momentum before collision seen anywhere in the calculation; substitution into balanced equation; evaluation of velocity; e.g. (momentum before =) 1.6 (kgm/s) 1.6 = 0.16 x 8 + 0.16 xv (v =) 2(m/s)```	either as 0.16×10 or 1.6	3
(c)	calculation of KE before collision; calculation of KE of either ball after collision; evaluation of energy difference; e.g. $\begin{aligned} & 0.5 \times 0.16 \times 10^{2} \\ & \left(0.5 \times 0.16 \times 8^{2}\right) \text { OR }\left(0.5 \times 0.16 \times 2^{2}\right) \\ & (8-(5.12+0.32)=) 2.6(\mathrm{~J}) \end{aligned}$	ecf from (b) 8 (J) 5.12 OR 0.32 (J) allow 2.56 (J)	3

Total for question 4 = 7 marks

Question number	Answer	Notes	Marks
5 (a)	any 4 from: MP1.fewer particles outside the balloon; MP2. (hence) fewer impacts (per second) on the outside of the balloon; MP3. (hence) pressure outside balloon is reduced; MP4. pressure inside balloon > pressure outside balloon; MP5. (hence) air inside the balloon expands until the pressures balance;	condone idea that all particles have been removed ignore references to vacuum reject 'air particles expanding'	4
(b) (i) (ii) (iii)	pressure increases; (because) volume (of trapped air) has decreased / particles collide with liquid surface more (often); water level increases / rises; greater \{force / pressure\} acts on the water (so can support greater weight of water above); water level decreases / falls; (because) pressure difference is now less/eq;	allow walls for liquid surface allow formula as justification $p=h \rho g$ (because the increased pressure difference supports a greater height of water)	2 2 2

Total for question $5=10$ marks

| (iv) | pattern statement e.g. as current increases
 the force increases;
 suitable comment about linearity; | ignore references to weight
 allow (directly) proportional | 2 |
| :--- | :--- | :--- | :--- | :---: |
| (v)relevant use of one set of data from graph or
 table;
 $8.1(\mathrm{~N}) ;$ | exclude data from 0.7A reading
 allow ecf from line on graph
 allow answers that round to
 $8.1(\mathrm{~N})$ | 2 | |

Total for question 6 = 17 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
7 \quad \text { (a) } \quad \text { (i) }
\] \\
(ii)
\end{tabular} \& measuring cylinder;
\[
0.005\left(\mathrm{~cm}^{3}\right)
\] \& allow graduated cylinder, burette, pipette, syringe \& \begin{tabular}{l}
\[
1
\] \\
1
\end{tabular} \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
correctly calculated average; given to 3 significant figures; e.g. \\
(average =) \(300.8(\mathrm{~mm})\) \\
(average to 3 s.f. =) 301 (mm) \\
use of radius in calculation; substitution and rearrangement; evaluation; \\
e.g. \\
radius \(=150(.4)(\mathrm{mm})\) \\
(length \(=\)) \(1.0 /(\pi \times 150.4 \times 150.4)\) \\
(length \(=\)) \(1.4 \times 10^{-5}(\mathrm{~mm})\)
\end{tabular} \& \begin{tabular}{l}
DOP \\
allow ecf from (b)(i) throughout seen anywhere \\
-1 for POT error answer of \(3.5 \times 10^{-6}(\mathrm{~mm})\) gains 2 marks for using diameter instead of radius \\
allow answers that round to 1.40-1.41
\end{tabular} \& 2

3

\hline
\end{tabular}

Total for question $7=7$ marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

